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Introduction

I In this presentation, I will discuss development of the RNN neutrino
energy estimator for the NOvA neutrino oscillation experiment.

I NOvA (NuMI Off-Axis νe Appearance) – a long baseline accelerator
based neutrino oscillation experiment.

I Plan of the talk:
I Overview of the NOvA experiment.
I Overview of the neutrino energy estimation at NOvA.
I Development of the RNN energy estimator.
I Other applications of the RNN architecture.
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Neutrino Oscillation

I Three generations (flavors) of neutrinos are known: νe , νµ, ντ .

I It was discovered, that neutrinos change their flavor over time.

I Probability Pνα→νβ
of neutrino changing its flavor is a periodic

function of time – phenomenon known as Neutrino Oscillation.

I By measuring neutrino oscillation probability Pνα→νβ
we can get

estimates of the fundamental parameters of the neutrino physics:
∆m2

21, ∆m2
32, θ12, θ23, θ13, δCP
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NOvA Overview

I NOvA is a long-baseline (810 km)
accelerator based neutrino oscillation
experiment.

I Studies NuMI muon (anti-) neutrino
beam (700 kW) produced at Fermilab.

I NOvA detects neutrinos with two finely
grained liquid scintillator detectors.
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NOvA Detectors

Near Detector (L ∼ 1 km, M ∼ 300 ton) measures original beam.
Far Detector (L ∼ 810 km, M ∼ 14 kton) measures oscillated beam.
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NOvA Detector Technology

I Basic unit of a detector is a long plastic tube
with liquid scintillator (cell).

I Light is collected by an optical fiber and
detected by an APD.

I Cells are combined into planes. Planes are
stacked in alternating directions.
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Sample of Activity in the NOvA Far Detector

NOvA - FNAL E929

Run:   22357 / 1
Event: 16934 / --

UTC Sun Feb 28, 2016
14:44:25.490674976 sec)µt (
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NOvA Physics

I NOvA performs two main analyses to constrain neutrino oscillation
parameters:

1. νµ Disappearance Analysis measuring Pµ→µ

2. νe Appearance Analysis measuring Pµ→e

for neutrinos and antineutrinos.

I Sensitive to the atmospheric oscillation sector: ∆m2
32, θ23, δCP.

I NOvA could help resolve some unanswered qustions about neutrino
physics:
I Neutrino Mass Hierarchy question?
I Whether θ23 = π/4?
I Whether CP symmetry is violated in the neutrino sector?
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νµ Disappearance Analysis

I νµ Disappearance Analysis is to estimate neutrino oscillation
parameters {∆m2

32, θ23}, by measuring survival probability of the νµ
neutrinos at the Far Detector:

Pνµ→νµ

(
E , L; {∆m2

32, θ23, ...}
)

I In order to make inferences about neutrino oscillation parameters
{∆m2

32, θ23}, we need to identify νµ neutrinos and estimate their
energies.

I The only reliable way to identify νµ is when it interacts via the
Charged Current interaction with the detector: νµ → µ+ Had
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Example of νµ Charged Current Event

NOvA - FNAL E929

Run:   31932 / 0
Event: 9173 / --

UTC Sat Jan 5, 2019
17:57:32.935683904
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Example of νµ CC event: νµ → µ+ Had
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The Standard νµ Energy Estimator

I The Standard Energy Estimator of νµ CC events (νµ → µ+ Had)
exploits domain knowledge.

I It works in three steps:
1. Identify µ track and estimate Eµ from its track length.
2. Estimate EHad from the calorimetric energy of its hits.
3. Eνµ = Eµ + EHad

I It relies on the fact that µ tracks are relatively easy to identify, and
that µ energy deposition rate dE/dx is well known.
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The Standard νµ Energy Estimator, 2
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(b) EHad vs Calorimetric Energy

Hadronic Energy component has large variance not explained by a total
calorimetric energy
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Can we estimate νµ energy better?

I The Standard νµ CC energy estimator has acceptable performance,
since on average for selected events 2/3 of Eνµ energy comes from
Eµ and only 1/3 comes from EHad.

I How can we improve NOvA νµ CC energy estimator?

I At NOvA we can reconstruct clusters of hits (prongs), that
correspond to individual particles at each event.
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Particle Reconstruction
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NOvA can reconstruct clusters of hits of individual particles:
I Find number of hits and calorimetric energies
I Estimate dimensions and directions
I Predict type of the particle
I Estimate energies and momenta of particles
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RNN Energy Estimator

I We would like to use information from each particle as input to a
new energy estimator.

I However, the number of particles (and prongs) varies between
events.

I We needed a model that is capable of processing inputs of varying
length.

I Recurrent Neural Networks are capable of handling inputs of varying
lengths.
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Recurrent Neural Network, 1

X₁ X₂ XₜX₃

RNN

0

Recurrent Neural Network is a feed-forward neural network that is applied
sequentially over inputs.
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Recurrent Neural Network, 2

X₁ X₂ XₜX₃

RNNRNN

0

At each step network reads information from inputs and from the
previous memory state, and outputs a new memory state.
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Recurrent Neural Network, 3

X₁ X₂ XₜX₃

RNNRNNRNN

0

At each step network reads information from inputs and from the
previous memory state, and outputs a new memory state.
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Recurrent Neural Network, 4

X₁ X₂ XₜX₃

RNNRNNRNN RNN

0

After all inputs have been processed, we extract output from the memory
of the recurrent neural network.
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RNN Energy Estimator. Data Formats

I Rapid prototyping of Neural Networks is possible in Python and
requires GPU enabled machines.

I NOvA dataset has size of about ≈ 1 TB and cannot be easily
accessed from Python nor transferred to a GPU cluster.

I I have designed an intermediate data format to extract relevant
variables from NOvA ROOT files and transfer them to the GPU
cluster, reducing dataset size down to ≈ 1 GB
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Architecture of the Recurrent Energy Estimator, Overview
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Long Short-Term Memory Cells are used to process fully reconstructed
prongs (3D) and partially reconstructed prongs (2D)
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Architecture of the Recurrent Energy Estimator, 3D Prong

Inputs

M
er

g
e

Outputs

B
at

ch
 N

or
m

Lepton
Energy

Neutrino
Energy

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

pn
g2

d

P
1

P
N

P
3

P
2

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

LSTM
(32)

sl
ic

e
pn

g3
d

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

P
1

P
N

P
3

P
2

LSTM
(32)

Information from fully reconstructed prongs (3D) is preprocessed through
a set of Dense layers and fed to a LSTM Cell.
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Architecture of the Recurrent Energy Estimator, 2D Prong
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Information from partially reconstructed prongs (2D) is fed through
another branch of Dense layers and LSTM Cell
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Architecture of the Recurrent Energy Estimator, Output
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Outputs of LSTM Cells are combined with global information about
event and used to predict µ and νµ energies.
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Performance of the Recurrent Energy Estimator
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RNN energy estimator is better than the standard in terms of RMS 9.4%
vs 10.8%.
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Absense of Labeled Data and Monte Carlo Simulation

CAT
400 600 800 1000 1200

?

Humans cannot accurately identify event types, much less predict
neutrino energies. We use Monte Carlo simulation to get labeled data.
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Monte Carlo Simulation

I We use Monte Carlo simulation of neutrino interactions in order to
train Machine/Deep Learning algorithms.

I Unfortunately, we do not have precise model of physical interactions,
therefore results of this simulation are not fully accurate.

I We use systematic uncertainties in order to estimate errors of Monte
Carlo simulation.
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Systematic Uncertainties
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Precision of measurements of oscillation parameters is limited by
systematic uncertainties.
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Data Augmentation to Reduce Sensitivity to Systematic

I We would like to reduce sensitivity of the RNN energy estimator to
the Calibration systematic uncertainty.

I It is possible to reduce sensitivity of an ML model to a systematic
uncertainty of its inputs by adding random noise to the uncertain
inputs.

I I have studied effects of addition of random noise in a way that
emulates the effect of the Calibration systematic.
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Sensitivity to the Calibration Systematic
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RNN EE can be made 5 times less sensitive to the Calibration systematic
than the Standard EE
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Effects of Using the RNN Energy Estimator

I New RNN energy estimator has 15% better energy reconstruction.

I New RNN energy estimator is 5 times less sensitive to the major
systematic uncertainty at NOvA.

I (Tentative Results) Improvement due to usage of the RNN EE is
equivalent to 10 − 50% of additional data with the Standard EE.
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NOvA Oscillation Parameter Contours
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(Tentative Results) NOvA 1σ contours for ∆m2
32 vs sin2 θ23
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NOvA Oscillation Parameter Contours, With 10% more Data
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(Tentative Results) With of 10% of extra data the Standard EE
performance does not match performance of the RNN EE.
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NOvA Oscillation Parameter Contours, With 20% more Data

0.40 0.45 0.50 0.55 0.60
sin2 23

2.2

2.3

2.4

2.5

2.6

2.7

m
2 32

(1
0

3 e
V

2 )

Standard
RNN
Standard. Data+20%

(Tentative Results) With of 20% of extra data the Standard EE
performance matches RNN for sin2 θ23
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NOvA Oscillation Parameter Contours, With 30% more Data
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(Tentative Results) Even with 30% of extra data the Standard EE
performance does not match RNN for ∆m2

32
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Usage of RNN Architecture for Event Classification

I NOvA relies on a CNN classifier in order to predict neutrino
interaction type.

I However, CNNs are difficult to interpret from a physical point of
view, and difficult to assess impact of systematic uncertainties on
their output.

I NOvA needed an interpretable version of the event classifier to cross
validate CNN classifier results.
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Recall. RNN vs CNN
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Usage of RNN Architecture for Event Classification, 2

I I have adapted the RNN energy estimator architecture to the task of
event classification.

I The RNN event classifier has slightly lower performance (within 5%)
compared to the CNN one, since it uses much less information as
inputs.

I But the RNN classifier is easy to interpret and it is about 100 times
faster to run.

Dmitrii Torbunov 38/40



Adoption of RNN Energy Estimator to Other Experiments

I I have developed an intermediate data format, data pipelines and
the python package to train the RNN energy estimator, that are not
specific to the NOvA experiment.

I They can be used to easily develop an RNN energy estimator for
other experiments.

I Right now, I am porting the NOvA RNN EE to DUNE experiment,
and it shows very promising results.
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Conclusions

I I have developed an RNN energy estimator for the NOvA
experiment, that has 15% better energy reconstruction and 5 times
less sensitive to the major systematic uncertainty at NOvA.

I It may significantly improve performance of the NOvA experiment,
pending further testing.

I The architecture of the RNN energy estimator can be easily adapted
to the task of event classification, and ported to other experiments.
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Backups
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NOvA Event Topologies
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Precision. SliceLID vs CVN
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t-SNE. SliceLID
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LSTM Neural Cell

Source: https://arxiv.org/abs/1808.05578
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